Data-Driven Model Invalidation for Unknown Lipschitz Continuous Systems via Abstraction

Zeyuan Jin, Mohammad Khajenejad, Sze Zheng Yong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations


In this paper, we consider the data-driven model invalidation problem for Lipschitz continuous systems, where instead of given mathematical models, only prior noisy sampled data of the systems are available. We show that this data-driven model invalidation problem can be solved using a tractable feasibility check. Our proposed approach consists of two main components: (i) a data-driven abstraction part that uses the noisy sampled data to over-approximate the unknown Lipschitz continuous dynamics with upper and lower functions, and (ii) an optimization-based model invalidation component that determines the incompatibility of the data-driven abstraction with a newly observed length-T output trajectory. Finally, we discuss several methods to reduce the computational complexity of the algorithm and demonstrate their effectiveness with a simulation example of swarm intent identification.

Original languageEnglish (US)
Title of host publication2020 American Control Conference, ACC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9781538682661
StatePublished - Jul 2020
Event2020 American Control Conference, ACC 2020 - Denver, United States
Duration: Jul 1 2020Jul 3 2020

Publication series

NameProceedings of the American Control Conference
ISSN (Print)0743-1619


Conference2020 American Control Conference, ACC 2020
Country/TerritoryUnited States

ASJC Scopus subject areas

  • Electrical and Electronic Engineering


Dive into the research topics of 'Data-Driven Model Invalidation for Unknown Lipschitz Continuous Systems via Abstraction'. Together they form a unique fingerprint.

Cite this