Abstract

Building a skilled cybersecurity workforce is paramount to building a safer digital world. However, the diverse skill set, constantly emerging vulnerabilities, and deployment of new cyber threats make learning cybersecurity challenging. Traditional education methods struggle to cope with cybersecurity's rapidly evolving landscape and keep students engaged and motivated. Different studies on students' behaviors show that an interactive mode of education by engaging through a question-answering system or dialoguing is one of the most effective learning methodologies. There is a strong need to create advanced AI-enabled education tools to promote interactive learning in cybersecurity. Unfortunately, there are no publicly available standard question-answer datasets to build such systems for students and novice learners to learn cybersecurity concepts, tools, and techniques. The education course material and online question banks are unstructured and need to be validated and updated by domain experts, which is tedious when done manually. In this paper, we propose CyberGen, a novel unification of large language models (LLMs) and knowledge graphs (KG) to generate the questions and answers for cybersecurity automatically. Augmenting the structured knowledge from knowledge graphs in prompts improves factual reasoning and reduces hallucinations in LLMs. We used the knowledge triples from cybersecurity knowledge graphs (AISecKG) to design prompts for ChatGPT and generate questions and answers using different prompting techniques. Our question-answer dataset, CyberQ, contains around 4k pairs of questions and answers. The domain expert manually evaluated the random samples for consistency and correctness. We train the generative model using the CyberQ dataset for question answering task.

Original languageEnglish (US)
Pages (from-to)23164-23172
Number of pages9
JournalProceedings of the AAAI Conference on Artificial Intelligence
Volume38
Issue number21
DOIs
StatePublished - Mar 25 2024
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: Feb 20 2024Feb 27 2024

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'CyberQ: Generating Questions and Answers for Cybersecurity Education Using Knowledge Graph-Augmented LLMs'. Together they form a unique fingerprint.

Cite this