Abstract
The correlation between percolation paths and hot-carrier degradation (HCD) in FinFETs is first presented in this work. Metal grain granularity (MGG) and random dopants (RD) influence on percolation paths is explored, and the conclusions are expanded to any source of potential fluctuations. All the analyses are performed using a 3-D TCAD Monte Carlo device simulator, in which carrier-ion and carrier-carrier interactions are treated in real-space, including the individual impact of localized charges. The carriers' energy bidimensional probability distribution is shown to follow the percolation paths for carriers with both low and high energy, the former being more pronounced near the source and the latter concentrated on the drain end. This suggests that HCD is more pronounced on the regions in the vicinity of percolation paths. Trapped charge's impact is also shown to be more significant when the trap is located near percolation paths, reinforcing the impact of hot carrier degradation. The analysis performed in this work may be used as the basis of a comprehensive HCD model, which is imperative for state-of-the-art FinFETs.
Original language | English (US) |
---|---|
Pages (from-to) | 381-386 |
Number of pages | 6 |
Journal | IEEE Transactions on Device and Materials Reliability |
Volume | 22 |
Issue number | 3 |
DOIs | |
State | Published - Sep 1 2022 |
Keywords
- FinFETs
- Hot-carrier degradation
- percolation paths
- trap location
- variability
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Safety, Risk, Reliability and Quality
- Electrical and Electronic Engineering