@inproceedings{81f80ac956e449e9bd1ee1c1a783e533,
title = "Continuous Flow Deterministic iDEP Ratchet Devices for High-throughput Organelle Separation",
abstract = "The heterogeneity of organelle size is an essential sign of the diseases like Alzheimer's disease, obesity, diabetes, cancer, etc. Thus, the size-based organelle fractionation is a key to accessing diagnostically relevant population of subcellular species for the development of innovative therapeutic interventions. We previously demonstrated a novel dielectrophoresis (DEP)-based deterministic ratchet migration phenomenon for size-based separation of particles using an insulator-based dielectrophoretic (iDEP) microfluidic device containing an array of insulating posts. Here, we report further advancements in this device for continuous high-throughput (HT) organelle separations.",
keywords = "Dielectrophoresis, Mitochondria, Organelle, Ratchet, Separation",
author = "Domin Koh and Ricardo Ortiz and Rabbani, {Mohammad Towshif} and Mukul Sonker and Velasquez, {Cesar A.} and Arriaga, {Edgar A.} and Alexandra Ros",
note = "Funding Information: We fabricated an iDEP microfluidic device for HT organelle fractionation that can handle volumes >5 µL for further assessment. Also we built a numerical model to observe the sized based fractionation of PS particles. The results of the numerical model were found to be in excellent agreement with migration behavior observed experimentally for PS beads. In the future, the electrokinetic parameters will be further explored to obtain optimum separation parameters for the size-based separation of mitochondria mixtures. Additionally, the size distribution of the sample collected at each outlet will be further analyzed to evaluate the separation efficiency. ACKNOWLEDGEMENTS We acknowledge the US National Institutes of Health (grant R01GM127562) for the financial support. REFERENCES [1] D. Kim, J. Luo, E. A. Arriaga, A. Ros, “Deterministic Ratchet for Sub-micrometer (Bio)particle Separation.” Analytical Chemistry 2018, 90 (7), 4370-4379 Publisher Copyright: {\textcopyright} 2021 MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences. All rights reserved.; 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2021 ; Conference date: 10-10-2021 Through 14-10-2021",
year = "2021",
language = "English (US)",
series = "MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences",
publisher = "Chemical and Biological Microsystems Society",
pages = "1189--1190",
booktitle = "MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences",
}