Comparative metal oxide nanoparticle toxicity using embryonic zebrafish

Leah C. Wehmas, Catherine Anders, Jordan Chess, Alex Punnoose, Cliff B. Pereira, Juliet A. Greenwood, Robert L. Tanguay

Research output: Contribution to journalArticlepeer-review

101 Scopus citations


Engineered metal oxide nanoparticles (MO NPs) are finding increasing utility in the medical field as anticancer agents. Before validation of in vivo anticancer efficacy can occur, a better understanding of whole-animal toxicity is required. We compared the toxicity of seven widely used semiconductor MO NPs made from zinc oxide (ZnO), titanium dioxide, cerium dioxide and tin dioxide prepared in pure water and in synthetic seawater using a five-day embryonic zebrafish assay. We hypothesized that the toxicity of these engineered MO NPs would depend on physicochemical properties. Significant agglomeration of MO NPs in aqueous solutions is common making it challenging to associate NP characteristics such as size and charge with toxicity. However, data from our agglomerated MO NPs suggests that the elemental composition and dissolution potential are major drivers of toxicity. Only ZnO caused significant adverse effects of all MO particles tested, and only when prepared in pure water (point estimate median lethal concentration=3.5-9.1mg/L). This toxicity was life stage dependent. The 24h toxicity increased greatly (~22.7 fold) when zebrafish exposures started at the larval life stage compared to the 24h toxicity following embryonic exposure. Investigation into whether dissolution could account for ZnO toxicity revealed high levels of zinc ion (40-89% of total sample) were generated. Exposure to zinc ion equivalents revealed dissolved Zn2+ may be a major contributor to ZnO toxicity.

Original languageEnglish (US)
Pages (from-to)702-715
Number of pages14
JournalToxicology Reports
StatePublished - Jan 1 2015
Externally publishedYes


  • Cerium dioxide
  • Dissolution
  • Nanoparticles
  • Tin dioxide
  • Titanium dioxide
  • Zebrafish
  • Zinc oxide

ASJC Scopus subject areas

  • Toxicology
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Comparative metal oxide nanoparticle toxicity using embryonic zebrafish'. Together they form a unique fingerprint.

Cite this