Cenozoic migration of a desert plant lineage across the North Atlantic

Thomas Denk, Johannes M. Bouchal, H. Tuncay Güner, Mario Coiro, Rainer Butzmann, Kathleen B. Pigg, Bruce H. Tiffney

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Previous paleobotanical work concluded that Paleogene elements of the sclerophyllous subhumid vegetation of western Eurasia and western North America were endemic to these disjunct regions, suggesting that the southern areas of the Holarctic flora were isolated at that time. Consequently, molecular studies invoked either parallel adaptation to dry climates from related ancestors, or long-distance dispersal in explaining disjunctions between the two regions, dismissing the contemporaneous migration of dry-adapted lineages via land bridges as unlikely. We report Vauquelinia (Rosaceae), currently endemic to western North America, in Cenozoic strata of western Eurasia. Revision of North American fossils previously assigned to Vauquelinia confirmed a single fossil-species of Vauquelinia and one of its close relative Kageneckia. We established taxonomic relationships of fossil-taxa using diagnostic character combinations shared with modern species and constructed a time-calibrated phylogeny. The fossil record suggests that Vauquelinia, currently endemic to arid and subdesert environments, originated under seasonally arid climates in the Eocene of western North America and subsequently crossed the Paleogene North Atlantic land bridge (NALB) to Europe. This pattern is replicated by other sclerophyllous, dry-adapted and warmth-loving plants, suggesting that several of these taxa potentially crossed the North Atlantic via the NALB during Eocene times.

Original languageEnglish (US)
Pages (from-to)2668-2684
Number of pages17
JournalNew Phytologist
Volume238
Issue number6
DOIs
StatePublished - Jun 2023

Keywords

  • Kageneckia
  • North Atlantic land bridge
  • Paleogene
  • Vauquelinia
  • biogeography
  • paleobotany
  • sclerophyllous plants

ASJC Scopus subject areas

  • Physiology
  • Plant Science

Fingerprint

Dive into the research topics of 'Cenozoic migration of a desert plant lineage across the North Atlantic'. Together they form a unique fingerprint.

Cite this