Calculations of the temperature and field dependent electronic mobility in β-SiC

R. P. Joshi, D. K. Ferry

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Simulations results of the field- and temperature-dependent electronic conductivity in β-SiC are reported. The calculations based on the Monte Carlo procedure, reveal a velocity overshoot above 100 kV/cm for a 1.0 μm device at 300 K with a characteristic response time of about 0.3 ps. The steady state velocity at 900 K is shown to be in excess of 107 cm/s. Frequency behaviour of the complex small signal mobility has also been calculated at different temperatures and biasing fields. The real part of the a.c. mobility exhibits a peak at frequencies close to the relaxation rates, provided the transient velocity for the corresponding bias field has an overshoot. Finally, it has been shown that with device down scaling, the a.c. mobilities can be appreciably reduced, and that the device electron velocities substantially lowered due to carrier injection at the cathode.

Original languageEnglish (US)
Pages (from-to)1911-1916
Number of pages6
JournalSolid State Electronics
Volume38
Issue number11
DOIs
StatePublished - Nov 1995

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Calculations of the temperature and field dependent electronic mobility in β-SiC'. Together they form a unique fingerprint.

Cite this