Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images

Md Mahfuzur Rahman Siddiquee, Jay Shah, Teresa Wu, Catherine Chong, Todd J. Schwedt, Gina Dumkrieger, Simona Nikolova, Baoxin Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Harnessing the power of deep neural networks in the medical imaging domain is challenging due to the difficulties in acquiring large annotated datasets, especially for rare diseases, which involve high costs, time, and effort for annotation. Unsupervised disease detection methods, such as anomaly detection, can significantly reduce human effort in these scenarios. While anomaly detection typically focuses on learning from images of healthy subjects only, real-world situations often present unannotated datasets with a mixture of healthy and diseased subjects. Recent studies have demonstrated that utilizing such unannotated images can improve unsupervised disease and anomaly detection. However, these methods do not utilize knowledge specific to registered neuroimages, resulting in a subpar performance in neurologic disease detection. To address this limitation, we propose Brainomaly, a GAN-based image-to-image translation method specifically designed for neurologic disease detection. Brainomaly not only offers tailored image-to-image translation suitable for neuroimages but also leverages unannotated mixed images to achieve superior neurologic disease detection. Additionally, we address the issue of model selection for inference without annotated samples by proposing a pseudo-AUC metric, further enhancing Brainomaly's detection performance. Extensive experiments and ablation studies demonstrate that Brainomaly outperforms existing state-of-the-art unsupervised disease and anomaly detection methods by significant margins in Alzheimer's disease detection using a publicly available dataset and headache detection using an institutional dataset. The code is available from https://github.com/mahfuzmohammad/Brainomaly.

Original languageEnglish (US)
Title of host publicationProceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7558-7567
Number of pages10
ISBN (Electronic)9798350318920
DOIs
StatePublished - Jan 3 2024
Event2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024 - Waikoloa, United States
Duration: Jan 4 2024Jan 8 2024

Publication series

NameProceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024

Conference

Conference2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024
Country/TerritoryUnited States
CityWaikoloa
Period1/4/241/8/24

Keywords

  • 3D
  • Algorithms
  • Algorithms
  • Applications
  • Biomedical / healthcare / medicine
  • Generative models for image
  • Image recognition and understanding
  • etc.
  • video

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images'. Together they form a unique fingerprint.

Cite this