Abstract
The ability to manipulate the binding strengths of intermediates on a catalyst is extremely challenging but essential for active and selective CO2 electroreduction (CO2RR). Single-Atom copper anchored on a nitrogenated carbon (Cu-N-C) structure is still rarely unexplored for efficient CO production. Herein, we demonstrate a plausible hydrogen-bonding promoted strategy that significantly enhances the ∗COOH adsorption and facilitates the ∗CO desorption on a Cu-N-C catalyst. The as-prepared Cu-N-C catalyst with Cu-N3 coordination achieves a high CO faradaic efficiency (FE) of 98% at-0.67 V (vs. reversible hydrogen electrode) as well as superior stability (FE remains above 90% over 20 h). Notably, in a three-phase flow cell configuration, a remarkable CO2 to CO FE of 99% at-0.67 V accompanying a large CO partial current density of 131.1 mA cm-2 at-1.17 V was observed. Density functional theory calculations reveal that the Cu-N3 coordination is potentially stabilized by an extended carbon plane with six nitrogen vacancies, while three unoccupied N sites are spontaneously saturated by protons during the CO2RR. Therefore, the hydrogen bonds formed between the adsorbed ∗COOH and adjacent protons significantly reduce the energy barrier of ∗COOH formation. After the first proton-coupled electron transfer process, the adsorbed ∗CO species are easily released to boost the CO production.
Original language | English (US) |
---|---|
Pages (from-to) | 1705-1712 |
Number of pages | 8 |
Journal | Journal of Materials Chemistry A |
Volume | 9 |
Issue number | 3 |
DOIs | |
State | Published - Jan 21 2021 |
ASJC Scopus subject areas
- Chemistry(all)
- Renewable Energy, Sustainability and the Environment
- Materials Science(all)