TY - JOUR
T1 - Bonding in alpha-quartz (SiO2)
T2 - A view of the unoccupied states
AU - Garvie, Laurence
AU - Rez, Peter
AU - Alvarez, Jose R.
AU - Buseck, P R
AU - Craven, Alan J.
AU - Brydson, Rik
PY - 2000
Y1 - 2000
N2 - High-resolution core-loss and low-loss spectra of α-quartz were acquired by electron energy-loss spectroscopy (EELS) with a transmission electron microscope (TEM). Spectra contain the Si L1, L2,3, K, and O K core-loss edges, and the surface and bulk low-loss spectra. The core-loss edges represent the atom-projected partial densities of states of the excited atoms and provide information on the unoccupied s, p, and d states as a function of energy above the edge onset. The band structure and total density of states were calculated for α-quartz using a self-consistent pseudopotential method. Projected local densities of Si and O s, p, and d states (LDOS) were calculated and compared with the EELS core-loss edges. These LDOS successfully reproduce the dominant Si and O core-loss edge shapes up to ca. 15 eV above the conduction-band onset. In addition, the calculations provide evidence for considerable charge transfer from Si to O and suggest a marked ionicity of the Si-O bond. The experimental and calculated data indicate that O 2p-Si d π-type bonding is minimal. The low-loss spectra exhibit four peaks that are assigned to transitions from maxima in the valence-band density of states to the conduction band. A band gap of 9.65 eV is measured from the low-loss spectrum. The structures of the surface low-loss spectrum are reproduced by the joint density of states derived from the band-structure calculation. This study provides a detailed description of the unoccupied DOS of α-quartz by comparing the core-loss edges and low-loss spectrum, on a relative energy scale and relating the spectral features to the atom- and angular-momentum-resolved components of a pseudopotential band-structure calculation.
AB - High-resolution core-loss and low-loss spectra of α-quartz were acquired by electron energy-loss spectroscopy (EELS) with a transmission electron microscope (TEM). Spectra contain the Si L1, L2,3, K, and O K core-loss edges, and the surface and bulk low-loss spectra. The core-loss edges represent the atom-projected partial densities of states of the excited atoms and provide information on the unoccupied s, p, and d states as a function of energy above the edge onset. The band structure and total density of states were calculated for α-quartz using a self-consistent pseudopotential method. Projected local densities of Si and O s, p, and d states (LDOS) were calculated and compared with the EELS core-loss edges. These LDOS successfully reproduce the dominant Si and O core-loss edge shapes up to ca. 15 eV above the conduction-band onset. In addition, the calculations provide evidence for considerable charge transfer from Si to O and suggest a marked ionicity of the Si-O bond. The experimental and calculated data indicate that O 2p-Si d π-type bonding is minimal. The low-loss spectra exhibit four peaks that are assigned to transitions from maxima in the valence-band density of states to the conduction band. A band gap of 9.65 eV is measured from the low-loss spectrum. The structures of the surface low-loss spectrum are reproduced by the joint density of states derived from the band-structure calculation. This study provides a detailed description of the unoccupied DOS of α-quartz by comparing the core-loss edges and low-loss spectrum, on a relative energy scale and relating the spectral features to the atom- and angular-momentum-resolved components of a pseudopotential band-structure calculation.
UR - http://www.scopus.com/inward/record.url?scp=0034048048&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034048048&partnerID=8YFLogxK
U2 - 10.2138/am-2000-5-611
DO - 10.2138/am-2000-5-611
M3 - Article
AN - SCOPUS:0034048048
SN - 0003-004X
VL - 85
SP - 732
EP - 738
JO - American Mineralogist
JF - American Mineralogist
IS - 5-6
ER -