TY - GEN
T1 - Autonomous Capability Assessment of Sequential Decision-Making Systems in Stochastic Settings
AU - Verma, Pulkit
AU - Karia, Rushang
AU - Srivastava, Siddharth
N1 - Publisher Copyright:
© 2023 Neural information processing systems foundation. All rights reserved.
PY - 2023
Y1 - 2023
N2 - It is essential for users to understand what their AI systems can and can't do in order to use them safely. However, the problem of enabling users to assess AI systems with sequential decision-making (SDM) capabilities is relatively understudied. This paper presents a new approach for modeling the capabilities of black-box AI systems that can plan and act, along with the possible effects and requirements for executing those capabilities in stochastic settings. We present an active-learning approach that can effectively interact with a black-box SDM system and learn an interpretable probabilistic model describing its capabilities. Theoretical analysis of the approach identifies the conditions under which the learning process is guaranteed to converge to the correct model of the agent; empirical evaluations on different agents and simulated scenarios show that this approach is few-shot generalizable and can effectively describe the capabilities of arbitrary black-box SDM agents in a sample-efficient manner.
AB - It is essential for users to understand what their AI systems can and can't do in order to use them safely. However, the problem of enabling users to assess AI systems with sequential decision-making (SDM) capabilities is relatively understudied. This paper presents a new approach for modeling the capabilities of black-box AI systems that can plan and act, along with the possible effects and requirements for executing those capabilities in stochastic settings. We present an active-learning approach that can effectively interact with a black-box SDM system and learn an interpretable probabilistic model describing its capabilities. Theoretical analysis of the approach identifies the conditions under which the learning process is guaranteed to converge to the correct model of the agent; empirical evaluations on different agents and simulated scenarios show that this approach is few-shot generalizable and can effectively describe the capabilities of arbitrary black-box SDM agents in a sample-efficient manner.
UR - http://www.scopus.com/inward/record.url?scp=85185667501&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85185667501&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85185667501
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
A2 - Oh, A.
A2 - Neumann, T.
A2 - Globerson, A.
A2 - Saenko, K.
A2 - Hardt, M.
A2 - Levine, S.
PB - Neural information processing systems foundation
T2 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
Y2 - 10 December 2023 through 16 December 2023
ER -