Abstract
To quantify the atmospheric reactivity of diisopropyl ether (DIPE), we have conducted a study of the kinetics and mechanism of reaction 1: OH + DIPE → products. Kinetic measurements of reaction 1 were made using both relative (at 295 K) and absolute techniques (over the temperature range 240–440 K). Rate data from both techniques can be represented by the following: k1 = (2.2−0.8+1.4) × 10−12 exp[(445 ± 145)/T] cm3 molecule−1 s−1. At 298 K, k1 = 9.8 × 10−12 cm3 molecule−1 s−1. The products of the simulated atmospheric oxidation of DIPE were identified using FT-IR spectroscopy; isopropyl acetate and HCHO were the main products. The atmospheric oxidation of DIPE can be represented by i-C3H7O-i-C3H7 + OH + 2NO → HCHO + i-C3H7OC(O)CH3 + HO2 + 2NO2. Our kinetic and mechanistic data were incorporated into a 1-day simulation of atmospheric chemistry to quantify the relative incremental reactivity of DIPE. Results are compared with other oxygenated fuel additives.
Original language | English (US) |
---|---|
Pages (from-to) | 98-104 |
Number of pages | 7 |
Journal | Environmental Science and Technology |
Volume | 27 |
Issue number | 1 |
DOIs | |
State | Published - 1993 |
Externally published | Yes |
ASJC Scopus subject areas
- Chemistry(all)
- Environmental Chemistry