TY - GEN
T1 - An upper bound on the capacity of non-binary deletion channels
AU - Rahmati, Mojtaba
AU - Duman, Tolga M.
PY - 2013
Y1 - 2013
N2 - We derive an upper bound on the capacity of non-binary deletion channels. Although binary deletion channels have received significant attention over the years, and many upper and lower bounds on their capacity have been derived, such studies for the non-binary case are largely missing. The state of the art is the following: as a trivial upper bound, capacity of an erasure channel with the same input alphabet as the deletion channel can be used, and as a lower bound the results by Diggavi and Grossglauser in [1] are available. In this paper, we derive the first non-trivial non-binary deletion channel capacity upper bound and reduce the gap with the existing achievable rates. To derive the results we first prove an inequality between the capacity of a 2K-ary deletion channel with deletion probability d, denoted by C2K(d), and the capacity of the binary deletion channel with the same deletion probability, C2(d), that is, C2K(d) ≤ C2(d)+(1-d) log(K). Then by employing some existing upper bounds on the capacity of the binary deletion channel, we obtain upper bounds on the capacity of the 2K-ary deletion channel. We illustrate via examples the use of the new bounds and discuss their asymptotic behavior as d → 0.
AB - We derive an upper bound on the capacity of non-binary deletion channels. Although binary deletion channels have received significant attention over the years, and many upper and lower bounds on their capacity have been derived, such studies for the non-binary case are largely missing. The state of the art is the following: as a trivial upper bound, capacity of an erasure channel with the same input alphabet as the deletion channel can be used, and as a lower bound the results by Diggavi and Grossglauser in [1] are available. In this paper, we derive the first non-trivial non-binary deletion channel capacity upper bound and reduce the gap with the existing achievable rates. To derive the results we first prove an inequality between the capacity of a 2K-ary deletion channel with deletion probability d, denoted by C2K(d), and the capacity of the binary deletion channel with the same deletion probability, C2(d), that is, C2K(d) ≤ C2(d)+(1-d) log(K). Then by employing some existing upper bounds on the capacity of the binary deletion channel, we obtain upper bounds on the capacity of the 2K-ary deletion channel. We illustrate via examples the use of the new bounds and discuss their asymptotic behavior as d → 0.
UR - http://www.scopus.com/inward/record.url?scp=84890405553&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84890405553&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2013.6620764
DO - 10.1109/ISIT.2013.6620764
M3 - Conference contribution
AN - SCOPUS:84890405553
SN - 9781479904464
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 2940
EP - 2944
BT - 2013 IEEE International Symposium on Information Theory, ISIT 2013
T2 - 2013 IEEE International Symposium on Information Theory, ISIT 2013
Y2 - 7 July 2013 through 12 July 2013
ER -