TY - GEN
T1 - An advanced spike detection and sorting system
AU - Yuan, Yuan
AU - Yang, Chenhui
AU - Si, Jennie
PY - 2009
Y1 - 2009
N2 - This paper proposes a comprehensive new neural spike detection and sorting system. As a critical first step to all neuroscientific studies of the nervous system using chronically implanted electrodes in the brain areas of interest, high performance neural spike detection and sorting from the massive amount of continuously recorded neural data is a challenging task, especially in real time applications such as brain machine interface. Many existing spike detection and sorting systems use simple thresholding as the first step to admit a large number of possible spikes for further sorting using various clustering algorithms. Significant efforts have gone into developing sophisticated sorting algorithms, many of which are time consuming in applications. In this paper, we develop a new system that is based on a reliable detection algorithm using multiple correlations of wavelet coefficients, which is robust and can be implemented in real time. Because of the advanced detection step, the system becomes less demanding on the performance of the sorting or clustering algorithms. This has simplified the overall system, and made real time interface and other real time applications possible. We tested the newly proposed system extensively, compared with several popular systems including commercial packages. While most thresholding based detection systems usually create a large number of false alarms, test results show that our proposed system on both artificial and real neural data have produced few false alarms but with high detection rates.
AB - This paper proposes a comprehensive new neural spike detection and sorting system. As a critical first step to all neuroscientific studies of the nervous system using chronically implanted electrodes in the brain areas of interest, high performance neural spike detection and sorting from the massive amount of continuously recorded neural data is a challenging task, especially in real time applications such as brain machine interface. Many existing spike detection and sorting systems use simple thresholding as the first step to admit a large number of possible spikes for further sorting using various clustering algorithms. Significant efforts have gone into developing sophisticated sorting algorithms, many of which are time consuming in applications. In this paper, we develop a new system that is based on a reliable detection algorithm using multiple correlations of wavelet coefficients, which is robust and can be implemented in real time. Because of the advanced detection step, the system becomes less demanding on the performance of the sorting or clustering algorithms. This has simplified the overall system, and made real time interface and other real time applications possible. We tested the newly proposed system extensively, compared with several popular systems including commercial packages. While most thresholding based detection systems usually create a large number of false alarms, test results show that our proposed system on both artificial and real neural data have produced few false alarms but with high detection rates.
UR - http://www.scopus.com/inward/record.url?scp=70449378424&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70449378424&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2009.5178999
DO - 10.1109/IJCNN.2009.5178999
M3 - Conference contribution
AN - SCOPUS:70449378424
SN - 9781424435531
T3 - Proceedings of the International Joint Conference on Neural Networks
SP - 3477
EP - 3484
BT - 2009 International Joint Conference on Neural Networks, IJCNN 2009
T2 - 2009 International Joint Conference on Neural Networks, IJCNN 2009
Y2 - 14 June 2009 through 19 June 2009
ER -