Abstract
Active control of fixed wing aircraft using piezoelectric materials has the potential to improve its aeroelastic response while reducing weight penalties. However, the design of active aircraft wings is a complex optimization problem requiring the use of formal optimization techniques. In this paper, a hybrid optimization procedure is applied to the design of a scaled airplane wing model, represented by a flat composite plate, with piezoelectric actuation to improve the aeroelastic response. Design objectives include reduced static displacements, improved passenger comfort during gust and increased damping. Constraints are imposed on the electric power consumption and ply stresses. Design variables include composite stacking sequence, actuator/sensor locations and controller gain. Numerical results indicate significant improvements in the design objectives and physically meaningful optimal designs.
Original language | English (US) |
---|---|
Pages (from-to) | 83-91 |
Number of pages | 9 |
Journal | Smart Materials and Structures |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - 1999 |
ASJC Scopus subject areas
- Signal Processing
- Civil and Structural Engineering
- Atomic and Molecular Physics, and Optics
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Electrical and Electronic Engineering