Abstract

Reviews are valuable resources that have been widely researched and used to improve the quality of recommendation services. Recent methods use multiple full embedding layers to model various levels of individual preferences,increasing the risk of the data sparsity issue. Although it is a potential way to deal with this issue that models homophily among users who have similar behaviors, the existing approaches are implemented in a coarse-grained way. They calculate user similarities by considering the homophily in their global behaviors but ignore their local behaviors under a specific context. In this paper, we propose a two-tier shared embedding model (TSE), which fuses coarse- and fine-grained ways of modeling homophily. It considers global behaviors to model homophily in a coarse-grained way, and the high-level feature in the process of each user-item interaction to model homophily in a fine-grained way. TSE designs a whole-to-part principle-based process to fuse these ways in the review-based recommendation. Experiments on five real-world datasets demonstrate that TSE significantly outperforms state-of-the-art models. It outperforms the best baseline by 20.50% on the root-mean-square error (RMSE) and 23.96% on the mean absolute error (MAE), respectively. The source code is available at https://github.com/dianziliu/TSE.git.

Original languageEnglish (US)
Title of host publicationCIKM 2023 - Proceedings of the 32nd ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages2928-2938
Number of pages11
ISBN (Electronic)9798400701245
DOIs
StatePublished - Oct 21 2023
Event32nd ACM International Conference on Information and Knowledge Management, CIKM 2023 - Birmingham, United Kingdom
Duration: Oct 21 2023Oct 25 2023

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference32nd ACM International Conference on Information and Knowledge Management, CIKM 2023
Country/TerritoryUnited Kingdom
CityBirmingham
Period10/21/2310/25/23

Keywords

  • Recommender Systems
  • Review-based recommendation
  • Shared embedding

ASJC Scopus subject areas

  • General Business, Management and Accounting
  • General Decision Sciences

Fingerprint

Dive into the research topics of 'A Two-tier Shared Embedding Method for Review-based Recommender Systems'. Together they form a unique fingerprint.

Cite this