TY - JOUR
T1 - A Thermodynamic Model to Estimate the Formation of Complex Nitrides of AlxMg(1–x)N in Silicon Steel
AU - Luo, Yan
AU - Zhang, Lifeng
AU - Li, Ming
AU - Sridhar, Seetharaman
N1 - Publisher Copyright:
© 2018, The Minerals, Metals & Materials Society and ASM International.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - A complex nitride of AlxMg(1−x)N was observed in silicon steels. A thermodynamic model was developed to predict the ferrite/nitride equilibrium in the Fe-Al-Mg-N alloy system, using published binary solubility products for stoichiometric phases. The model was used to estimate the solubility product of nitride compound, equilibrium ferrite, and nitride compositions, and the amounts of each phase, as a function of steel composition and temperature. In the current model, the molar ratio Al/(Al + Mg) in the complex nitride was great due to the low dissolved magnesium in steel. For a steel containing 0.52 wt pct Als, 10 ppm T.Mg., and 20 ppm T.N. at 1100 K (827 °C), the complex nitride was expressed by Al0.99496Mg0.00504N and the solubility product of this complex nitride was 2.95 × 10−7. In addition, the solution temperature of the complex nitride increased with increasing the nitrogen and aluminum in steel. The good agreement between the prediction and the detected precipitate compositions validated the current model.
AB - A complex nitride of AlxMg(1−x)N was observed in silicon steels. A thermodynamic model was developed to predict the ferrite/nitride equilibrium in the Fe-Al-Mg-N alloy system, using published binary solubility products for stoichiometric phases. The model was used to estimate the solubility product of nitride compound, equilibrium ferrite, and nitride compositions, and the amounts of each phase, as a function of steel composition and temperature. In the current model, the molar ratio Al/(Al + Mg) in the complex nitride was great due to the low dissolved magnesium in steel. For a steel containing 0.52 wt pct Als, 10 ppm T.Mg., and 20 ppm T.N. at 1100 K (827 °C), the complex nitride was expressed by Al0.99496Mg0.00504N and the solubility product of this complex nitride was 2.95 × 10−7. In addition, the solution temperature of the complex nitride increased with increasing the nitrogen and aluminum in steel. The good agreement between the prediction and the detected precipitate compositions validated the current model.
UR - http://www.scopus.com/inward/record.url?scp=85043714991&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85043714991&partnerID=8YFLogxK
U2 - 10.1007/s11663-018-1219-6
DO - 10.1007/s11663-018-1219-6
M3 - Article
AN - SCOPUS:85043714991
SN - 1073-5615
VL - 49
SP - 894
EP - 901
JO - Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science
JF - Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science
IS - 3
ER -