Abstract
Network-on-chip (NoC) has been proposed as a solution for the global communication challenges of System-on-chip (SoC) design in the nanoscale technologies. NoC design with mesh based topologies requires mapping of cores to router ports, and routing of traffic traces such that the bandwidth and latency constraints are satisfied. We present a novel automated design technique that solves the mesh based NoC design problem with an objective of minimizing the communication energy. In contrast to existing research that only take bandwidth constraints as inputs, our technique solves the NoC design problem in the presence of bandwidth as well as latency constraints. We compare our technique with a recent work called NMAP and an optimal MILP based formulation. We prove that the complexity of our technique is lower than that of NMAP. For the latency constrained case, while NMAP fails on most test cases, our technique is able to generate high quality results. In comparison to the MILP formulation, the results produced by our technique are within 14% of the optimal.
Original language | English (US) |
---|---|
Title of host publication | Proceedings of the International Symposium on Low Power Electronics and Design |
Pages | 387-392 |
Number of pages | 6 |
State | Published - 2005 |
Event | 2005 International Symposium on Low Power Electronics and Design - San Diego, CA, United States Duration: Aug 8 2005 → Aug 10 2005 |
Other
Other | 2005 International Symposium on Low Power Electronics and Design |
---|---|
Country/Territory | United States |
City | San Diego, CA |
Period | 8/8/05 → 8/10/05 |
Keywords
- Automated design
- Core mapping
- Mesh topology
- Network-on-Chip
- Routing
ASJC Scopus subject areas
- Engineering(all)