A Regularized Attention Mechanism for Graph Attention Networks

Uday Shankar Shanthamallu, Jayaraman J. Thiagarajan, Andreas Spanias

Research output: Chapter in Book/Report/Conference proceedingConference contribution

19 Scopus citations

Abstract

Machine learning models that can exploit the inherent structure in data have gained prominence. In particular, there is a surge in deep learning solutions for graph-structured data, due to its wide-spread applicability in several fields. Graph attention networks (GAT), a recent addition to the broad class of feature learning models in graphs, utilizes the attention mechanism to efficiently learn continuous vector representations for semi-supervised learning problems. In this paper, we perform a detailed analysis of GAT models, and present interesting insights into their behavior. In particular, we show that the models are vulnerable to heterogeneous rogue nodes and hence propose novel regularization strategies to improve the robustness of GAT models. Using benchmark datasets, we demonstrate performance improvements on semi-supervised learning, using the proposed robust variant of GAT.

Original languageEnglish (US)
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3372-3376
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: May 4 2020May 8 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period5/4/205/8/20

Keywords

  • graph attention models
  • graph neural networks
  • robust attention mechanism
  • semi-supervised learning

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A Regularized Attention Mechanism for Graph Attention Networks'. Together they form a unique fingerprint.

Cite this