A new analytic approximation to general diode equation

Jin He, Ming Fang, Bo Li, Yu Cao

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


This paper presents a new analytic approximation to the general diode equation with the presence of a series resistance. Using exact first- and second-order derivatives and a modified Newton-Raphson formula, a concise analytic approximate solution is derived for the diode equation with the significant improvement on the accuracy and computation efficiency, thus it is very useful for users to implement the diode model and the inversion charge models in other advanced MOSFET compact models such as ACM, EKV and BSIM5 into the circuit simulators, e.g., SPICE for circuit simulation and analysis.

Original languageEnglish (US)
Pages (from-to)1371-1374
Number of pages4
JournalSolid-State Electronics
Issue number7-8
StatePublished - Jul 2006

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry


Dive into the research topics of 'A new analytic approximation to general diode equation'. Together they form a unique fingerprint.

Cite this