A Mössbauer investigation of iron-rich terrestrial hydrothermal vent systems: Lessons for Mars exploration

Manson L. Wade, David G. Agresti, Thomas J. Wdowiak, Lawrence P. Armendarez, Jack Farmer

Research output: Contribution to journalArticlepeer-review

61 Scopus citations


Hydrothermal spring systems may well have been present on early Mars and could have served as a habitat for primitive life. The integrated instrument suite of the Athena Rover has, as a component on the robotic arm, a Mössbauer spectrometer. In the context of future Mars exploration we present results of Mössbauer analysis of a suite of samples from an iron-rich thermal spring in the Chocolate Pots area of Yellowstone National Park (YNP) and from Obsidian Pool (YNP) and Manitou Springs, Colorado. We have found that Mössbauer spectroscopy can discriminate among the iron-bearing minerals in our samples. Those near the vent and on the surface are identified as ferrihydrite, an amorphous ferric mineraloid. Subsurface samples, collected from cores, which are likely to have undergone inorganic and/or biologically mediated alteration (diagenesis), exhibit spectral signatures that include nontronite (a smectite clay), hematite (α-Fe2O3), small-particle/nanophase goethite (α-FeOOH), and siderite (FeCO3). We find for iron minerals that Mössbauer spectroscopy is at least as efficient in identification as X-ray diffraction. This observation is important from an exploration standpoint. As a planetary surface instrument, Mössbauer spectroscopy can yield high-quality spectral data without sample preparation (backscatter mode). We have also used field emission scanning electron microscopy (FESEM), in conjunction with energy-dispersive X ray (EDX) fluorescence spectroscopy, to characterize the microbiological component of surface sinters and the relation between the microbiological and the mineralogical framework. Evidence is presented that the minerals found in these deposits can have multibillion-year residence times and thus may have survived their possible production in a putative early Martian hot spring up to the present day. Examples include the nanophase property and the Mössbauer signature for siderite, which has been identified in a 2.09-billion-year old hematite-rich chert stromatolite. Our research demonstrates that in situ Mössbauer spectroscopy can help determine whether hydrothermal mineral deposits exist on Mars, which is significant for exobiology because of the issue of whether that world ever had conditions conducive to the origin of life. As a useful tool for selection of samples suitable for transport to Earth, Mössbauer spectroscopy will not only serve geological interests but will also have potential for exopaleontology.

Original languageEnglish (US)
Article number1998JE900049
Pages (from-to)8489-8507
Number of pages19
JournalJournal of Geophysical Research: Planets
Issue numberE4
StatePublished - Apr 25 1999

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Geochemistry and Petrology
  • Geophysics
  • Oceanography
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Atmospheric Science


Dive into the research topics of 'A Mössbauer investigation of iron-rich terrestrial hydrothermal vent systems: Lessons for Mars exploration'. Together they form a unique fingerprint.

Cite this