Abstract
We report the detection of 21 cm emission at an average redshift z ¯ = 2.3 in the cross-correlation of data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) with measurements of the Lyα forest from eBOSS. Data collected by CHIME over 88 days in the 400-500 MHz frequency band (1.8 < z < 2.5) are formed into maps of the sky and high-pass delay filtered to suppress the foreground power, corresponding to removing cosmological scales with k ∥ ≲ 0.13 Mpc−1 at the average redshift. Line-of-sight spectra to the eBOSS background quasar locations are extracted from the CHIME maps and combined with the Lyα forest flux transmission spectra to estimate the 21 cm-Lyα cross-correlation function. Fitting a simulation-derived template function to this measurement results in a 9σ detection significance. The coherent accumulation of the signal through cross-correlation is sufficient to enable a detection despite excess variance from foreground residuals ∼6-10 times brighter than the expected thermal noise level in the correlation function. These results are the highest-redshift measurement of 21 cm emission to date, and they set the stage for future 21 cm intensity mapping analyses at z > 1.8.
Original language | English (US) |
---|---|
Article number | 23 |
Journal | Astrophysical Journal |
Volume | 963 |
Issue number | 1 |
DOIs | |
State | Published - Mar 1 2024 |
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science