TY - GEN
T1 - A Contrastive Knowledge Transfer Framework for Model Compression and Transfer Learning
AU - Zhao, Kaiqi
AU - Chen, Yitao
AU - Zhao, Ming
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Knowledge Transfer (KT) achieves competitive performance and is widely used for image classification tasks in model compression and transfer learning. Existing KT works transfer the information from a large model ("teacher") to train a small model ("student") by minimizing the difference of their conditionally independent output distributions. However, these works overlook the high-dimension structural knowledge from the intermediate representations of the teacher, which leads to limited effectiveness, and they are motivated by various heuristic intuitions, which makes it difficult to generalize. This paper proposes a novel Contrastive Knowledge Transfer Framework (CKTF), which enables the transfer of sufficient structural knowledge from the teacher to the student by optimizing multiple contrastive objectives across the intermediate representations between them. Also, CKTF provides a generalized agreement to existing KT techniques and increases their performance significantly by deriving them as specific cases of CKTF. The extensive evaluation shows that CKTF consistently outperforms the existing KT works by 0.04% to 11.59% in model compression and by 0.4% to 4.75% in transfer learning on various models and datasets.
AB - Knowledge Transfer (KT) achieves competitive performance and is widely used for image classification tasks in model compression and transfer learning. Existing KT works transfer the information from a large model ("teacher") to train a small model ("student") by minimizing the difference of their conditionally independent output distributions. However, these works overlook the high-dimension structural knowledge from the intermediate representations of the teacher, which leads to limited effectiveness, and they are motivated by various heuristic intuitions, which makes it difficult to generalize. This paper proposes a novel Contrastive Knowledge Transfer Framework (CKTF), which enables the transfer of sufficient structural knowledge from the teacher to the student by optimizing multiple contrastive objectives across the intermediate representations between them. Also, CKTF provides a generalized agreement to existing KT techniques and increases their performance significantly by deriving them as specific cases of CKTF. The extensive evaluation shows that CKTF consistently outperforms the existing KT works by 0.04% to 11.59% in model compression and by 0.4% to 4.75% in transfer learning on various models and datasets.
KW - contrastive learning
KW - knowledge transfer
KW - model compression
KW - transfer learning
UR - http://www.scopus.com/inward/record.url?scp=85162131115&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85162131115&partnerID=8YFLogxK
U2 - 10.1109/ICASSP49357.2023.10095744
DO - 10.1109/ICASSP49357.2023.10095744
M3 - Conference contribution
AN - SCOPUS:85162131115
T3 - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
BT - ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
Y2 - 4 June 2023 through 10 June 2023
ER -